Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 9(3): e0081223, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38426787

RESUMO

Pregnant patients are at greater risk of hospitalization with severe COVID-19 than non-pregnant people. This was a retrospective observational cohort study of remnant clinical specimens from patients who visited acute care hospitals within the Johns Hopkins Health System in the Baltimore, MD-Washington DC, area between October 2020 and May 2022. Participants included confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected pregnant people and matched non-pregnant people (the matching criteria included age, race/ethnicity, area deprivation index, insurance status, and vaccination status to ensure matched demographics). The primary dependent measures were clinical COVID-19 outcomes, infectious virus recovery, viral RNA levels, and mucosal anti-spike (S) IgG titers from upper respiratory tract samples. A total of 452 individuals (117 pregnant and 335 non-pregnant) were included in the study, with both vaccinated and unvaccinated individuals represented. Pregnant patients were at increased risk of hospitalization (odds ratio [OR] = 4.2; confidence interval [CI] = 2.0-8.6), intensive care unit admittance (OR = 4.5; CI = 1.2-14.2), and being placed on supplemental oxygen therapy (OR = 3.1; CI = 1.3-6.9). Individuals infected during their third trimester had higher mucosal anti-S IgG titers and lower viral RNA levels (P < 0.05) than those infected during their first or second trimesters. Pregnant individuals experiencing breakthrough infections due to the Omicron variant had reduced anti-S IgG compared to non-pregnant patients (P < 0.05). The observed increased severity of COVID-19 and reduced mucosal antibody responses particularly among pregnant participants infected with the Omicron variant suggest that maintaining high levels of SARS-CoV-2 immunity through booster vaccines may be important for the protection of this at-risk population.IMPORTANCEIn this retrospective observational cohort study, we analyzed remnant clinical samples from non-pregnant and pregnant individuals with confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections who visited the Johns Hopkins Hospital System between October 2020 and May 2022. Disease severity, including intensive care unit admission, was greater among pregnant than non-pregnant patients. Vaccination reduced recovery of infectious virus and viral RNA levels in non-pregnant patients, but not in pregnant patients. In pregnant patients, increased nasopharyngeal viral RNA levels and recovery of infectious virus were associated with reduced mucosal IgG antibody responses, especially among women in their first trimester of pregnancy or experiencing breakthrough infections from Omicron variants. Taken together, this study provides insights into how pregnant patients are at greater risk of severe COVID-19. The novelty of this study is that it focuses on the relationship between the mucosal antibody response and its association with virus load and disease outcomes in pregnant people, whereas previous studies have focused on serological immunity. Vaccination status, gestational age, and SARS-CoV-2 omicron variant impact mucosal antibody responses and recovery of infectious virus from pregnant patients.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Gravidez , Humanos , Feminino , SARS-CoV-2 , Formação de Anticorpos , Infecções Irruptivas , Estudos de Coortes , Estudos Retrospectivos , RNA Viral , Imunoglobulina G
2.
Virology ; 592: 109986, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38290414

RESUMO

The large amount of viral RNA produced during infections has the potential to interact with and effectively sequester cellular RNA binding proteins, thereby influencing aspects of post-transcriptional gene regulation in the infected cell. Here we demonstrate that the abundant 5' leader RNA region of SARS-CoV-2 viral RNAs can interact with the cellular polypyrimidine tract binding protein (PTBP1). Interestingly, the effect of a knockdown of PTBP1 protein on cellular gene expression is also mimicked during SARS-CoV-2 infection, suggesting that this protein may be functionally sequestered by viral RNAs. Consistent with this model, the alternative splicing of mRNAs that is normally controlled by PTBP1 is dysregulated during SARS-CoV-2 infection. Collectively, these data suggest that the SARS-CoV-2 leader RNA sequesters the cellular PTBP1 protein during infection, resulting in significant impacts on the RNA biology of the host cell. These alterations in post-transcriptional gene regulation may play a role in SARS-CoV-2 mediated molecular pathogenesis.


Assuntos
COVID-19 , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , SARS-CoV-2 , Humanos , Processamento Alternativo , COVID-19/metabolismo , COVID-19/virologia , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , RNA/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Splicing de RNA , SARS-CoV-2/fisiologia
3.
J Fluoresc ; 34(2): 561-570, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37310590

RESUMO

The COVID-19 pandemic has created a worldwide public health crisis that has since resulted in 6.8 million reported deaths. The pandemic prompted the immediate response of researchers around the world to engage in rapid vaccine development, surveillance programs, and antiviral testing, which resulted in the delivery of multiple vaccines and repurposed antiviral drug candidates. However, the emergence of new highly transmissible SARS-CoV-2 variants has renewed the desire for discovering new antiviral drug candidates with high efficacy against the emerging variants of concern. Traditional antiviral testing methods employ the plaque-reduction neutralization tests (PRNTs), plaque assays, or RT-PCR analysis, but each assay can be tedious and time-consuming, requiring 2-3 days to complete the initial antiviral assay in biologically relevant cells, and then 3-4 days to visualize and count plaques in Vero cells, or to complete cell extractions and PCR analysis. In recent years, plate-based image cytometers have demonstrated high-throughput vaccine screening methods, which can be adopted for screening potential antiviral drug candidates. In this work, we developed a high-throughput antiviral testing method employing the Celigo Image Cytometer to investigate the efficacy of antiviral drug candidates on SARS-CoV-2 infectivity using a fluorescent reporter virus and their safety by measuring the cytotoxicity effects on the healthy host cell line using fluorescent viability stains. Compared to traditional methods, the assays defined here eliminated on average 3-4 days from our standard processing time for antiviral testing. Moreover, we were able to utilize human cell lines directly that are not typically amenable to PRNT or plaque assays. The Celigo Image Cytometer can provide an efficient and robust method to rapidly identify potential antiviral drugs to effectively combat the rapidly spreading SARS-CoV-2 virus and its variants during the pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Chlorocebus aethiops , Humanos , Células Vero , Pandemias , Ensaios de Triagem em Larga Escala/métodos , Antivirais/farmacologia
5.
Curr Top Microbiol Immunol ; 441: 225-251, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37695431

RESUMO

Biological sex and age have profound effects on immune responses throughout the lifespan and impact vaccine acceptance, responses, and outcomes. Mounting evidence from epidemiological, clinical, and animal model studies show that males and females respond differentially to vaccination throughout the lifespan. Within age groups, females tend to produce greater vaccine-induced immune responses than males, with sex differences apparent across all age groups, but are most pronounced among reproductive aged individuals. Females report more adverse effects following vaccination than males. Females, especially among children under 5 years of age, also experience more non-specific effects of vaccination. Despite these known sex- and age-specific differences in vaccine-induced immune responses and outcomes, sex and age are often ignored in vaccine research. Herein, we review the known sex differences in the immunogenicity, effectiveness, reactogenicity, and non-specific effects of vaccination over the lifespan. Ways in which these data can be leveraged to improve vaccine research are described.


Assuntos
Pesquisa Biomédica , Vacinas , Feminino , Masculino , Animais , Imunidade Heteróloga , Vacinas/efeitos adversos , Vacinação , Modelos Animais
6.
medRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993216

RESUMO

Importance: Pregnant women are at increased risk of severe COVID-19, but the contribution of viral RNA load, the presence of infectious virus, and mucosal antibody responses remain understudied. Objective: To evaluate the association of COVID-19 outcomes following confirmed infection with vaccination status, mucosal antibody responses, infectious virus recovery and viral RNA levels in pregnant compared with non-pregnant women. Design: A retrospective observational cohort study of remnant clinical specimens from SARS-CoV-2 infected patients between October 2020-May 2022. Setting: Five acute care hospitals within the Johns Hopkins Health System (JHHS) in the Baltimore, MD-Washington, DC area. Participants: Participants included confirmed SARS-CoV-2 infected pregnant women and matched non-pregnant women (matching criteria included age, race/ethnicity, and vaccination status). Exposure: SARS-CoV-2 infection, with documentation of SARS-CoV-2 mRNA vaccination. Main Outcomes: The primary dependent measures were clinical COVID-19 outcomes, infectious virus recovery, viral RNA levels, and mucosal anti-spike (S) IgG titers from upper respiratory tract samples. Clinical outcomes were compared using odds ratios (OR), and measures of virus and antibody were compared using either Fisher's exact test, two-way ANOVA, or regression analyses. Results were stratified according to pregnancy, vaccination status, maternal age, trimester of pregnancy, and infecting SARS-CoV-2 variant. Resultss: A total of 452 individuals (117 pregnant and 335 non-pregnant) were included in the study, with both vaccinated and unvaccinated individuals represented. Pregnant women were at increased risk of hospitalization (OR = 4.2; CI = 2.0-8.6), ICU admittance, (OR = 4.5; CI = 1.2-14.2), and of being placed on supplemental oxygen therapy (OR = 3.1; CI =13-6.9). An age-associated decrease in anti-S IgG titer and corresponding increase in viral RNA levels (P< 0.001) was observed in vaccinated pregnant, but not non-pregnant, women. Individuals in their 3rd trimester had higher anti-S IgG titers and lower viral RNA levels (P< 0.05) than those in their 1st or 2nd trimesters. Pregnant individuals experiencing breakthrough infections due to the omicron variant had reduced anti-S IgG compared to non-pregnant women (P< 0.05). Conclusions and Relevance: In this cohort study, vaccination status, maternal age, trimester of pregnancy, and infecting SARS-CoV-2 variant were each identified as drivers of differences in mucosal anti-S IgG responses in pregnant compared with non-pregnant women. Observed increased severity of COVID-19 and reduced mucosal antibody responses particularly among pregnant participants infected with the Omicron variant suggest that maintaining high levels of SARS-CoV-2 immunity may be important for protection of this at-risk population.

7.
PLoS Pathog ; 18(11): e1010930, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36318584

RESUMO

The antiviral endoribonuclease, RNase L, is activated by the mammalian innate immune response to destroy host and viral RNA to ultimately reduce viral gene expression. Herein, we show that RNase L and RNase L-mediated mRNA decay are primarily localized to the cytoplasm. Consequently, RNA-binding proteins (RBPs) translocate from the cytoplasm to the nucleus upon RNase L activation due to the presence of intact nuclear RNA. The re-localization of RBPs to the nucleus coincides with global alterations to RNA processing in the nucleus. While affecting many host mRNAs, these alterations are pronounced in mRNAs encoding type I and type III interferons and correlate with their retention in the nucleus and reduction in interferon protein production. Similar RNA processing defects also occur during infection with either dengue virus or SARS-CoV-2 when RNase L is activated. These findings reveal that the distribution of RBPs between the nucleus and cytosol is dictated by the availability of RNA in each compartment. Thus, viral infections that trigger RNase L-mediated cytoplasmic RNA in the cytoplasm also alter RNA processing in the nucleus, resulting in an ingenious multi-step immune block to protein biogenesis.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , COVID-19/genética , Endorribonucleases/genética , Endorribonucleases/metabolismo , Citoplasma/metabolismo , Mamíferos
8.
PLoS Pathog ; 18(4): e1010411, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377915

RESUMO

The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Antivirais/metabolismo , Humanos , Insetos Vetores , Insulina/genética , Insulina/metabolismo , Mosquitos Vetores , Interferência de RNA , Zika virus/genética
9.
Viruses ; 14(2)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35215835

RESUMO

During infection with dengue viruses (DENVs), the lipid landscape within host cells is significantly altered to assemble membrane platforms that support viral replication and particle assembly. Fatty acyl-CoAs are key intermediates in the biosynthesis of complex lipids that form these membranes. They also function as key signaling lipids in the cell. Here, we carried out loss of function studies on acyl-CoA thioesterases (ACOTs), a family of enzymes that hydrolyze fatty acyl-CoAs to free fatty acids and coenzyme A, to understand their influence on the lifecycle of DENVs. The loss of function of the type I ACOTs 1 (cytoplasmic) and 2 (mitochondrial) together significantly increased DENV serotype 2 (DENV2) viral replication and infectious particle release. However, isolated knockdown of mitochondrial ACOT2 significantly decreased DENV2 protein translation, genome replication, and infectious virus release. Furthermore, loss of ACOT7 function, a mitochondrial type II ACOT, similarly suppressed DENV2. As ACOT1 and ACOT2 are splice variants, these data suggest that functional differences and substrate specificities due to the location (cytosol and mitochondria, respectively) of these proteins may account for the differences in DENV2 infection phenotype. Additionally, loss of mitochondrial ACOT2 and ACOT7 expression also altered the expression of several ACOTs located in multiple organelle compartments within the cell, highlighting a complex relationship between ACOTs in the DENV2 virus lifecycle.


Assuntos
Vírus da Dengue/fisiologia , Ácidos Graxos/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Tioléster Hidrolases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Citosol/enzimologia , Vírus da Dengue/genética , Técnicas de Silenciamento de Genes , Genoma Viral , Humanos , Mitocôndrias/enzimologia , Palmitoil-CoA Hidrolase/genética , RNA Interferente Pequeno , Tioléster Hidrolases/genética , Liberação de Vírus , Replicação Viral
10.
Viruses ; 13(12)2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34960661

RESUMO

Nestled within the Rocky Mountain National Forest, 114 scientists and students gathered at Colorado State University's Mountain Campus for this year's 21st annual Rocky Mountain National Virology Association meeting. This 3-day retreat consisted of 31 talks and 30 poster presentations discussing advances in research pertaining to viral and prion diseases. The keynote address provided a timely discussion on zoonotic coronaviruses, lessons learned, and the path forward towards predicting, preparing, and preventing future viral disease outbreaks. Other invited speakers discussed advances in SARS-CoV-2 surveillance, molecular interactions involved in flavivirus genome assembly, evaluation of ethnomedicines for their efficacy against infectious diseases, multi-omic analyses to define risk factors associated with long COVID, the role that interferon lambda plays in control of viral pathogenesis, cell-fusion-dependent pathogenesis of varicella zoster virus, and advances in the development of a vaccine platform against prion diseases. On behalf of the Rocky Mountain Virology Association, this report summarizes select presentations.


Assuntos
Virologia , Animais , Interações Hospedeiro-Patógeno , Humanos , Pandemias/prevenção & controle , Doenças Priônicas/diagnóstico , Doenças Priônicas/prevenção & controle , Príons/imunologia , Príons/isolamento & purificação , Príons/patogenicidade , Vacinas , Virologia/organização & administração , Viroses/diagnóstico , Viroses/epidemiologia , Viroses/prevenção & controle , Viroses/virologia , Vírus/classificação , Vírus/imunologia , Vírus/isolamento & purificação , Vírus/patogenicidade
11.
RNA ; 27(11): 1318-1329, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34315815

RESUMO

The transcriptional induction of interferon (IFN) genes is a key feature of the mammalian antiviral response that limits viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Here, we performed single-molecule RNA visualization to examine the expression and localization of host mRNAs during SARS-CoV-2 infection. Our data show that the biogenesis of type I and type III IFN mRNAs is inhibited at multiple steps during SARS-CoV-2 infection. First, translocation of the interferon regulatory factor 3 (IRF3) transcription factor to the nucleus is limited in response to SARS-CoV-2, indicating that SARS-CoV-2 inhibits RLR-MAVS signaling and thus weakens transcriptional induction of IFN genes. Second, we observed that IFN mRNAs primarily localize to the site of transcription in most SARS-CoV-2 infected cells, suggesting that SARS-CoV-2 either inhibits the release of IFN mRNAs from their sites of transcription and/or triggers decay of IFN mRNAs in the nucleus upon exiting the site of transcription. Lastly, nuclear-cytoplasmic transport of IFN mRNAs is inhibited during SARS-CoV-2 infection, which we propose is a consequence of widespread degradation of host cytoplasmic basal mRNAs in the early stages of SARS-CoV-2 replication by the SARS-CoV-2 Nsp1 protein, as well as the host antiviral endoribonuclease, RNase L. Importantly, IFN mRNAs can escape SARS-CoV-2-mediated degradation if they reach the cytoplasm, making rescue of mRNA export a viable means for promoting the immune response to SARS-CoV-2.


Assuntos
COVID-19/genética , Interações Hospedeiro-Patógeno/genética , Interferons/genética , Estabilidade de RNA , SARS-CoV-2/patogenicidade , Proteínas não Estruturais Virais/genética , Células A549 , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/virologia , Linhagem Celular , Endorribonucleases/genética , Endorribonucleases/metabolismo , Humanos , Hibridização in Situ Fluorescente/métodos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Interferons/metabolismo , RNA Mensageiro/metabolismo , Imagem Individual de Molécula
12.
bioRxiv ; 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33907748

RESUMO

A key feature of the mammalian innate immune response to viral infection is the transcriptional induction of interferon (IFN) genes, which encode for secreted proteins that prime the antiviral response and limit viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Herein, we show SARS-CoV-2 infection limits type I and type III IFN biogenesis by preventing the release of mRNA from their sites of transcription and/or triggering their nuclear degradation. In addition, SARS-CoV-2 infection inhibits nuclear-cytoplasmic transport of IFN mRNAs as a consequence of widespread cytosolic mRNA degradation mediated by both activation of the host antiviral endoribonuclease, RNase L, and by the SARS-CoV-2 protein, Nsp1. These findings argue that inhibition of host and/or viral Nsp1-mediated mRNA decay, as well as IFN treatments, may reduce viral-associated pathogenesis by promoting the innate immune response.

13.
Viruses ; 12(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940824

RESUMO

This autumn, 95 scientists and students from the Rocky Mountain area, along with invited speakers from Colorado, California, Montana, Florida, Louisiana, New York, Maryland, and India, attended the 19th annual meeting of the Rocky Mountain Virology Association that was held at the Colorado State University Mountain Campus located in the Rocky Mountains. The two-day gathering featured 30 talks and 13 posters-all of which focused on specific areas of current virology and prion protein research. The keynote presentation reviewed new tools for microbial discovery and diagnostics. This timely discussion described the opportunities new investigators have to expand the field of microbiology into chronic and acute diseases, the pitfalls of sensitive molecular methods for pathogen discovery, and ways in which microbiology help us understand disruptions in the social fabric that pose pandemic threats at least as real as Ebola or influenza. Other areas of interest included host factors that influence virus replication, in-depth analysis of virus transcription and its effect on host gene expression, and multiple discussions of virus pathology, epidemiology as well as new avenues of diagnosis and treatment. The meeting was held at the peak of fall Aspen colors, surrounded by five mountains >11,000 ft (3.3 km), where the secluded campus provided the ideal setting for extended discussions, outdoor exercise and stargazing. On behalf of the Rocky Mountain Virology Association, this report summarizes 43 selected presentations.


Assuntos
Interações entre Hospedeiro e Microrganismos , Príons , Viroses , Vírus , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Flavivirus/patogenicidade , Humanos , Proteínas Priônicas , Retroviridae/genética , Retroviridae/patogenicidade , Simplexvirus/genética , Simplexvirus/patogenicidade , Sociedades Científicas , Viroses/diagnóstico , Viroses/epidemiologia , Viroses/terapia
14.
Viruses ; 13(1)2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383821

RESUMO

Due to the COVID-19 pandemic and multiple devastating forest fires, the 2020 meeting of the Rocky Mountain Virology Association was held virtually. The three-day gathering featured talks describing recent advances in virology and prion research. The keynote presentation described the measles virus paradox of immune suppression and life-long immunity. Special invited speakers presented information concerning visualizing antiviral effector cell biology in mucosal tissues, uncovering the T-cell tropism of Epstein-Barr virus type 2, a history and current survey of coronavirus spike proteins, a summary of Zika virus vaccination and immunity, the innate immune response to flavivirus infections, a discussion concerning prion disease as it relates to multiple system atrophy, and clues for discussing virology with the non-virologist. On behalf of the Rocky Mountain Virology Association, this report summarizes selected presentations.


Assuntos
Sociedades Científicas , Virologia , Animais , Aniversários e Eventos Especiais , Antivirais , COVID-19 , Infecções por Flavivirus/imunologia , Herpesvirus Humano 4 , Humanos , Imunidade , Pandemias , Príons , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação , Zika virus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...